Blog & News

What is IPsec?

In computing, Internet Protocol Security (IPsec) is a secure network protocol suite that authenticates and encrypts the packets of data to provide secure encrypted communication between two computers over an Internet Protocol network. It is used in virtual private networks (VPNs).

IPsec includes protocols for establishing mutual authentication between agents at the beginning of a session and negotiation of cryptographic keys to use during the session. IPsec can protect data flows between a pair of hosts (host-to-host), between a pair of security gateways (network-to-network), or between a security gateway and a host (network-to-host).[1] IPsec uses cryptographic security services to protect communications over Internet Protocol (IP) networks. It supports network-level peer authentication, data-origin authentication, data integrity, data confidentiality (encryption), and replay protection.

The initial IPv4 suite was developed with few security provisions. As a part of the IPv4 enhancement, IPsec is a layer 3 OSI model or internet layer end-to-end security scheme. In contrast, while some other Internet security systems in widespread use operate above layer 3, such as Transport Layer Security (TLS) that operates at the Transport Layer and Secure Shell (SSH) that operates at the Application layer, IPsec can automatically secure applications at the IP layer.

The IPsec can be implemented in the IP stack of an operating system, which requires modification of the source code. This method of implementation is done for hosts and security gateways. Various IPsec capable IP stacks are available from companies, such as HP or IBM. An alternative is so called bump-in-the-stack (BITS) implementation, where the operating system source code does not have to be modified. Here IPsec is installed between the IP stack and the network drivers. This way operating systems can be retrofitted with IPsec. This method of implementation is also used for both hosts and gateways. However, when retrofitting IPsec the encapsulation of IP packets may cause problems for the automatic path MTU discovery, where the maximum transmission unit (MTU) size on the network path between two IP hosts is established. If a host or gateway has a separate cryptoprocessor, which is common in the military and can also be found in commercial systems, a so-called bump-in-the-wire (BITW) implementation of IPsec is possible.

When IPsec is implemented in the kernel, the key management and ISAKMP/IKE negotiation is carried out from user space. The NRL-developed and openly specified “PF_KEY Key Management API, Version 2” is often used to enable the application-space key management application to update the IPsec Security Associations stored within the kernel-space IPsec implementation.[36] Existing IPsec implementations usually include ESP, AH, and IKE version 2. Existing IPsec implementations on UNIX-like operating systems, for example, Solaris or Linux, usually include PF_KEY version 2.

Embedded IPsec can be used to ensure the secure communication among applications running over constrained resource systems with a small overhead.